Object Detection Using Keygraphs

نویسندگان

  • Marcelo Hashimoto
  • Roberto Marcondes Cesar Junior
چکیده

We propose a new framework for object detection based on a generalization of the keypoint correspondence framework. This framework is based on replacing keypoints by keygraphs, i.e. isomorph directed graphs whose vertices are keypoints, in order to explore relative and structural information. Unlike similar works in the literature, we deal directly with graphs in the entire pipeline: we search for graph correspondences instead of searching for individual point correspondences and then building graph correspondences from them afterwards. We also estimate the pose from graph correspondences instead of falling back to point correspondences through a voting table. The contributions of this paper are the proposed framework and an implementation that properly handles its inherent issues of loss of locality and combinatorial explosion, showing its viability for real-time applications. In particular, we introduce the novel concept of keytuples to solve a running time issue. The accuracy of the implementation is shown by results of over 800 experiments with a well-known database of images. The speed is illustrated by real-time tracking with two different cameras in ordinary hardware.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Object Matching Using Structural Relations

This paper presents a method for object matching that uses local graphs called keygraphs instead of simple keypoints. A novel method to compare keygraphs was proposed in order to exploit their local structural information, producing better local matches. This speeds up an object matching pipeline, particularly using RANSAC, because each keygraph match contains enough information to produce a po...

متن کامل

Discovering Chance Scenarios using Small-World KeyGraphs and Evolutionary Computation

A successful process of chance discovery using the visual maps proposed by KeyGraphs requires the usage of graphs with an appropriate degree of complexity. Complex KeyGraphs often prevent users from discovering chances because of the difficulties of interpretation. On the other hand, overly simplistic KeyGraphs seldom includes a chance because of the sparseness of information. In a useful KeyGr...

متن کامل

Discovering Deep Building Blocks for Competent Genetic Algorithms Using Chance Discovery via KeyGraphs

In this paper, we see whether chance discovery in the form of KeyGraphs can be used to reveal deep building blocks to competent genetic algorithms, thereby speeding innovation in particularly difficult problems. On an intellectual level, showing the connection between KeyGraphs and genetic algorithms as related pieces of the innovation puzzle is both scientifically and computationally interesti...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1310.0171  شماره 

صفحات  -

تاریخ انتشار 2013